Regression model
Binary logit/probit model
P(y=1)=P(∑βx+ϵ>0)=P(ϵ>−∑βx)=1−F(−∑βx)=F(∑βx)
logit CDF: F(x)=1+exex
probit CDF: F(x)=ϕ(x)=∫−∞x√2π1e2−z2dz
marginal effect
logit
odds is 1−PP=e∑βx
odds ratio is odds(a)odds(a+1)=eβx
probit
Φ−1(p)=∑βx
Φa=1−1−Φa=0−1=βa
Order logit/probit model
Dependant variables are ordered values((ex) worst worse normal good very good)
P(y=1)P(y=2)=P(y∗≤0)=P(ε≤−∑βx)=F(−∑βx)=P(0≤y≤μ2)=P(−∑βx<ε<μ2−∑βx)=F(μ2−∑βx)−F(−∑βx)
marginal effect
logit
odds is P(y≠1)P(y=1)
odds ratio is odds(a=0)odds(a=1)=eβa
probit
Φ−1(p(y=1))=z
Φa=1−1−Φa=0−1=βa
boundary value
logit
odds is P(y>i)P(y≤i)
odds ratio is odds(a=0)odds(a=1)=eμi−βa
probit
Φ−1(P(y≤i))−Φ−1(P(y≤i−1))=μi
Multinominal logit model
In case of the number of independent variables is greater than 3.
pj+pJpj=F(k∑βjkxk)
where p_J is a reference variable and pj=pJ+j variablej variable
pJpj=e∑βjkxk
j∑pJpj=pJ1−pj=pJ1−1=i∑eβjkxk
pJ=1+∑je∑βjkxk1
pj=1+∑je∑βjkxke∑βjkxk
Nested logit/probit model
independent variable is hierarchy structure
graph TD;
A[buy car] --> B[used]
A --> B'[new]
C[no buy car] --> D[used]
C --> D'[new]
graph LR;
A[F] --> A1[F_1]
A --> A2[1-F_1]
A1 --> B1[F_k12]
A1 --> B2[1-F_k12]
A2 --> B3[f_k22]
A2 --> B4[1-f_k22]
marginal effect
logit
odds is 1−FkiFki
odds ratio is odds(a=0odds(a=1)=βa
probit
Φ−1(P(y=1))=∑βx
Φa=1−1−Φa=0−1=βa
Conditional model
In case independent variables is changed by depedent variables
ex: independent variables -> cost, time by seoul, gyunggi
dependent variables -> bus train car
p(bus)=etrain+ecar+ebusebus
eβa: when a variable increase 1, the increase ratio reference variable(car) to comparable variable(bus)
marginal effect
∂zj∂Pj∗=∂zjk∂∑eaze∑az(Q=∑eaz)=Q2αe∑eazQ−αe2∑eaz=Qαe∑αz(QQ−ee∑αz)=αkPj(1−Pj)(P=Qe∑αz)
Ranked logit model
In case of ranked dependent variables
Marginal effect
eβa=λ0λλ: Hazard function
probability
P(ur1>ur2…)=j=1∏J−1∑eVkeVj
where Vj=βjxi+αzj+θwij
rank
exp(∑i≠αβixi+α∑zj)
where α is means, zj
Example probability
the probability of a(1st) b(sec) c(thd):
a⋅b⋅c=exp(a)+exp(b)+exp(c)exp(P(a))⋅exp(b)+exp(c)exp(P(b))⋅exp(c)exp(P(c))