Noether's theorem
Euler-Langrange Equation
∂φ∂L−∂μ∂φ′∂L=0
Action
S=∫L(φ,∂μφ,xμ)d4x
transition
φ↦φ+δ
L↦L+∂μJ
L difference
dL=∂φ∂L∂φ+∂φ′∂L∂φ′
=∂φ∂L∂φ−∂μ(∂φ′∂L)∂φ+∂μ(∂φ′∂L)∂φ+∂φ′∂L∂φ′
=∂φ∂L∂φ−∂μ(∂φ′∂L)∂φ+∂μ(∂φ′∂L∂φ)
=(∂φ∂L−∂μ∂φ′∂L)∂φ+∂μ(∂φ′∂L∂φ)
=∂μ(∂φ′∂L∂φ)
∂μJ=∂μ(∂φ′∂L∂φ)
∂μ(∂φ′∂L∂φ−J)=0
Noether's current
j=∂φ′∂L∂φ−J is const
Examples
Euclidean translations
The Langrangian is
L=a∑21max^˙a2−V(x^1,x^2,...)
Transition is
x^↦x^+δ^,x^˙↦x˙,t↦t
Because potential depends on the relative positions of each particles,
L↦L
Noether's current is
j=∂x^˙∂L∂x^=a∑max^˙aδ^=const
because of δ^ is arbitary direction,
a∑max^˙a=const
Euclidean rotation
The Langrangian is
L=a∑21max^˙a2−V(x^1,x^2,...)
Transition is
x^↦x^+δ^×x^,x^˙↦x^˙+δ^×x^˙,t↦t
Because potential depends on the relative positions of each particles,
L↦L
Noether's current is
j=∂x^˙∂L∂x^=a∑max^˙a⋅(δ^×x^)=a∑δ^⋅(x^×max^˙a)=const
because of δ^ is arbitary direction,
a∑(x^×max^˙a)
time translations
The Langrangian is
L=a∑21max^˙a2−V(x^1,x^2,...)
Transition is
x^↦x^+∂t∂x^ϵ,x^˙↦x^˙+∂t∂x^˙ϵ,t↦t+ϵ
Because potential depends on the relative positions of each particles,
L↦L+∂t∂Lϵ
Noether's current is
j=∂x^˙∂L∂t∂x^ϵ−Lϵ=(∂x^˙∂Lx^˙−L)ϵ=const
because of δ^ is arbitary direction,
a∑∂x^˙∂Lx^˙−L=const
called Hamiltonian is conserved