Noether's theorem

Euler-Langrange Equation

LφμLφ=0\frac{\partial L}{\partial \varphi} - \partial_\mu \frac{\partial L}{\partial \varphi'} = 0

Action

S=L(φ,μφ,xμ)d4x\mathcal S = \int \mathcal L(\varphi, \partial_\mu\varphi, x^\mu)\,d^4x

transition

φφ+δ\varphi \mapsto \varphi + \delta

LL+μJ\mathcal L \mapsto \mathcal L + \partial_\mu J

L difference

dL=Lφφ+Lφφd\mathcal L = \frac{\partial\mathcal L}{\partial\varphi}\partial\varphi + \frac{\partial\mathcal L}{\partial\varphi'}\partial\varphi'

=Lφφμ(Lφ)φ+μ(Lφ)φ+Lφφ= \frac{\partial\mathcal L}{\partial\varphi}\partial\varphi - \partial_\mu(\frac{\partial\mathcal L}{\partial\varphi'})\partial\varphi + \partial_\mu(\frac{\partial\mathcal L}{\partial\varphi'})\partial\varphi + \frac{\partial\mathcal L}{\partial\varphi'}\partial\varphi'

=Lφφμ(Lφ)φ+μ(Lφφ)= \frac{\partial\mathcal L}{\partial\varphi}\partial\varphi - \partial_\mu(\frac{\partial\mathcal L}{\partial\varphi'})\partial\varphi + \partial_\mu(\frac{\partial\mathcal L}{\partial\varphi'}\partial\varphi)

=(LφμLφ)φ+μ(Lφφ)= (\frac{\partial\mathcal L}{\partial\varphi} - \partial_\mu\frac{\partial\mathcal L}{\partial\varphi'})\partial\varphi + \partial_\mu(\frac{\partial\mathcal L}{\partial\varphi'}\partial\varphi)

=μ(Lφφ)= \partial_\mu(\frac{\partial\mathcal L}{\partial\varphi'}\partial\varphi)


μJ=μ(Lφφ)\partial_\mu J = \partial_\mu(\frac{\partial\mathcal L}{\partial\varphi'}\partial\varphi)


μ(LφφJ)=0\partial_\mu (\frac{\partial\mathcal L}{\partial\varphi'}\partial\varphi - J) = 0

Noether's current

j=LφφJ is constj = \frac{\partial\mathcal L}{\partial\varphi'}\partial\varphi - J \text{ is const}

Examples

Euclidean translations

The Langrangian is

L=a12max^˙a2V(x^1,x^2,...)\mathcal L = \sum_a \frac{1}{2}m_a\dot{\hat x}_a^2 - V(\hat x_1, \hat x_2, ...)

Transition is

x^x^+δ^,x^˙x˙,tt\hat x \mapsto \hat x + \hat \delta,\quad \dot {\hat x} \mapsto \dot x, \quad t \mapsto t

Because potential depends on the relative positions of each particles,

LL\mathcal L \mapsto \mathcal{L}

Noether's current is

j=Lx^˙x^=amax^˙aδ^=constj = \frac{\partial\mathcal L}{\partial \dot {\hat x}}\partial \hat x = \sum_a m_a\dot {\hat x}_a\hat\delta=\text{const}

because of δ^\hat \delta is arbitary direction,

amax^˙a=const\sum_a m_a\dot {\hat x}_a=\text{const}

Euclidean rotation

The Langrangian is

L=a12max^˙a2V(x^1,x^2,...)\mathcal L = \sum_a \frac{1}{2}m_a\dot{\hat x}_a^2 - V(\hat x_1, \hat x_2, ...)

Transition is

x^x^+δ^×x^,x^˙x^˙+δ^×x^˙,tt\hat x \mapsto \hat x + \hat \delta \times \hat x,\quad \dot {\hat x} \mapsto \dot {\hat x} + \hat \delta \times \dot {\hat x}, \quad t \mapsto t

Because potential depends on the relative positions of each particles,

LL\mathcal L \mapsto \mathcal{L}

Noether's current is

j=Lx^˙x^=amax^˙a(δ^×x^)=aδ^(x^×max^˙a)=constj = \frac{\partial\mathcal L}{\partial \dot {\hat x}}\partial \hat x = \sum_a m_a\dot {\hat x}_a\cdot(\hat\delta \times {\hat x})=\sum_a\hat\delta \cdot({\hat x} \times m_a\dot {\hat x}_a )=\text{const}

because of δ^\hat \delta is arbitary direction,

a(x^×max^˙a)\sum_a({\hat x} \times m_a\dot {\hat x}_a )

time translations

The Langrangian is

L=a12max^˙a2V(x^1,x^2,...)\mathcal L = \sum_a \frac{1}{2}m_a\dot{\hat x}_a^2 - V(\hat x_1, \hat x_2, ...)

Transition is

x^x^+x^tϵ,x^˙x^˙+x^˙tϵ,tt+ϵ\hat x \mapsto \hat x + \frac{\partial\hat x}{\partial t}\epsilon ,\quad \dot {\hat x} \mapsto \dot {\hat x} + \frac{\partial\dot {\hat x}}{\partial t}\epsilon, \quad t \mapsto t + \epsilon

Because potential depends on the relative positions of each particles,

LL+Ltϵ\mathcal L \mapsto \mathcal{L} + \frac{\partial\mathcal{L}}{\partial t}\epsilon

Noether's current is

j=Lx^˙x^tϵLϵ=(Lx^˙x^˙L)ϵ=constj =\frac{\partial\mathcal{L}}{\partial \dot {\hat x}} \frac{\partial\hat x}{\partial t}\epsilon - \mathcal L\epsilon = (\frac{\partial\mathcal{L}}{\partial \dot {\hat x}}\dot {\hat x}- \mathcal L)\epsilon = \text{const}

because of δ^\hat \delta is arbitary direction,

aLx^˙x^˙L=const\sum_a \frac{\partial\mathcal{L}}{\partial \dot {\hat x}}\dot {\hat x}- \mathcal L=\text{const}

called Hamiltonian is conserved