Main theory

let λ(E)\lambda(\mathbf E) be the subgroup G(K/F)G(\mathbf {K/F}) leaving fixed E\mathbf E.

Let K\mathbf{K} be a normal extension (splitting and seperable) of F\mathbf F, where FEK\mathbf {F \le E \le K}.

  1. λ(E)=G(K/E)\lambda (\mathbf E)\,=\,\mathbf {\mathrm G(K/E)}

  2. E=KG(K/E)\mathbf {E\,=\,K_{\mathrm G(K/E)}}

  3. HG(K/F),λ(EH)=H\mathbf{\mathrm H \le \mathrm G(K/F)},\quad\lambda\mathbf{(E_{\mathrm H})=\mathrm H}

    (EH\mathbf{E_H} is a field of a set of all element fixed by H\mathrm{H}.)

  4. [K:E]=λ(E),[E:F]=G(K/F):λ(E)\mathbf{[K:E]=|\lambda(E)|,\quad [E:F]=\mathrm G(K/F):\lambda(E)}

    (G(K/F):λ(E)\mathbf{\mathrm G(K/F):\lambda(E)} is means a order of G(K/F)/λ(E)\mathbf{\mathrm G(K/F)\,/\,\lambda(E)} )

  5. G(E/F)G(K/F)/G(K/E)\mathbf{\mathrm G(E/F)\simeq \mathrm G(K/F)\,/\,\mathrm G(K/E)}

  6. above the diagrams are equavalent.

uml diagram

Proof

1. λ(E)=G(K/E)\lambda (\mathbf E)\,=\,\mathbf {\mathrm G(K/E)}

this is just the definition of λ\lambda.

2. E=KG(K/E)\mathbf {E\,=\,K_{\mathrm G(K/E)}}

by the definition of KG(K/E)\mathbf{K_{\mathrm G(K/E)}}, EE is fixed in KK. this show that EKG(K/E)\mathbf{E \leq K_{\mathrm G(K/E)}}.

we prove KG(K/E)E\mathbf{K_{\mathrm G(K/E)}\leq E}.
Let αK,where αE\alpha \in \mathbf K, \text{where } \alpha \notin \mathbf E. Since K\mathbf K is a normal extension of E\mathbf E, we can find an automoriphsim of K\mathbf K leaving E\mathbf E fixed and mapping α\alpha onto different a zero of irr(α,F)irr(\alpha, \mathbf F). therefore, at least there exists a element in G(K/E)G(\mathbf {K/E}) that move α\alpha. this implies that KG(K/E)E\mathbf{K_{\mathrm G(K/E)}\leq E},
so E=KG(K/E)\mathbf {E\,=\,K_{\mathrm G(K/E)}}.

3. HG(K/F),λ(EH)=H\mathbf{\mathrm H \le \mathrm G(K/F)},\quad\lambda\mathbf{(E_{\mathrm H})=\mathrm H}

we think about H,λ(KH),G(K/F)\mathbf{\mathrm H,\,\lambda(K_{\mathrm H}),\,G(K/F)}. a relations of them is Hλ(KH)G(K/F)\mathbf{\mathrm H \leq \lambda (K_{\mathrm H}) \leq G(K/F)}. we shall suppose that

H<λ(KH)H < \lambda(\mathbf K_H)

and shall derive contradiction. As a finite seperable extension, K=KH(α)\mathbf K = \mathbf K_{H}(\alpha) for some αK\alpha \in K, Let

n=[K:KH]={K:KH}=G(K/KH)n=\mathbf{[K : K_{\mathrm H}]=\{K : K_{\mathrm H}\}=|\mathrm G(K/K_{\mathrm H})|}

then H<G(K/KH)=n|H| < |G(\mathbf K / \mathbf K_H)|=n. Let the elements of HH be σ1,,σH\sigma_1, \ldots,\, \sigma_{|H|}. and consider the polynomial

f(x)=i=1H(xσi(α)).f(x) = \prod_{i=1}^{|H|}(x-\sigma_i(\alpha))\text .

this function is of degree H<n|H|< n and symmetric expressions in the σi\sigma_i. because H being a group, then σσ1,,σσHH\sigma\sigma_1,\,\ldots,\, \sigma\sigma_{|H|} \in H, these cofficeients are invariant under each isomporiphism σi\sigma_i. Hence f(x)f(x) has coefficients in KHK_H. and some σi\sigma_i is 11, so f(α)=0f(\alpha)=0. Therefore, we have

deg(α,KH)=H<n=[K:KH]=[KH(α):KH]deg(\alpha, \mathbf K_H) = |H| < n = \mathbf {[K : K_{\mathrm H}]=[K_{\mathrm H}(\alpha) : K_{\mathrm H}]}

4.[K:E]=λ(E),[E:F]=G(K/F):λ(E)\mathbf{[K:E]=|\lambda(E)|,\quad [E:F]=\mathrm G(K/F):\lambda(E)}

since K\mathbf K is a normal extension of E\mathbf E, [K:E]={K:E}\mathbf{[K:E]=\{K:E\}}. and the defintion is λ(E)={K:E}|\lambda(E)|= \{\mathbf{K:E}\}. therefore, [K:E]=λ(E)\mathbf{[K:E]=|\lambda(E)|}.

we prove [E:F]=G(K/F):λ(E)\mathbf{[E:F]=\mathrm G(K/F):\lambda(E)}. Let σ\sigma and τ\tau are int the same left coset of λ(E)\lambda(\mathbf E). Let σ=hα1,τ=hα2 where α1,α2E\sigma = h\alpha_1, \tau=h\alpha_2 \text{ where } \alpha_1, \alpha_2 \in E. σ1τ=α11h1hα2=α11α2G(K/E)\sigma^{-1}\tau = \alpha_1^{-1}h^{-1}h\alpha_2=\alpha_1^{-1}\alpha_2 \in G(\mathbf {K/E}). for αE\alpha \in \mathbf E, σ1τ(α)=α\sigma^{-1}\tau(\alpha)=\alpha and then σ(α)=τ(α)\sigma(\alpha)=\tau(\alpha). Hence, the same left coset of λ(E)\lambda(\mathbf E) induce the same element in the G(E/F)G(\mathbf{E/F}) so G(E/F)=G(K/F):λ(E)|G(\mathbf{E/F})|=\mathbf{\mathrm G(K/F):\lambda(E)}.
therfore, [E:F]={E:F}=G(E/F)=G(K/F):λ(E)\mathbf{[E:F]=\{E:F\}=|G(\mathbf{E/F})|=\mathbf{\mathrm G(K/F):\lambda(E)}}

5. G(E/F)G(K/F)/G(K/E)\mathbf{\mathrm G(E/F)\simeq \mathrm G(K/F)\,/\,\mathrm G(K/E)}

we prove E\mathbf E is a normal extension of F\mathbf F. every extension E\mathbf E of F\mathbf F, EEK\mathbf{E \leq E \leq K}, is separable over F\mathbf F. E\mathbf E is separable over F\mathbf F.[1] every isomorphism of E\mathbf E onto a subfield of F\overline \mathbf F leaving F\mathbf F fixed can be extended to an automorphism of K\mathbf K, since K\mathbf K is normal over F\mathbf F. thus the automorphisms of G(K/F)\mathbf {G(K/F)} induce all possible isomorphisms of E\mathbf E onto a subfield of F\overline\mathbf F leaving F\mathbf F fixed. so then E\mathbf E is a splitting filed over F\mathbf F.[2] and hence is nomrmal over F\mathbf F.

by property 2, E\mathbf E is the fixed filed of G(K/E)\mathbf{G(K/E)}, so for σG(K/F)\sigma \in \mathbf{G(K/F)}, σ(α)E\sigma(\alpha)\in \mathbf E if and only if for all τG(K/E)\tau \in \mathbf{G(K/E)}, τ(σ(α))=σ(α)\tau(\sigma(\alpha))=\sigma(\alpha). so σ1τσ(α)=α\sigma^{-1}\tau\sigma(\alpha)=\alpha. this means σG(K/F)\sigma \in \mathbf{G(K/F)} and τG(K/E)\tau \in \mathbf{G(K/E)}, that is

σ1τσG(K/E).\sigma^{-1}\tau\sigma \in \mathbf{G(K/E)}\text .

this is the condition that G(K/E)\mathbf{G(K/E)} be a normal subgroup of G(K/E)\mathbf{G(K/E)}

when E\mathbf E is a normal extension of F\mathbf F, there is a one to one correpsondence between left coset G(K/E)\mathbf{G(K/E)} over G(K/F)\mathbf{G(K/F)} and automorphism of E\mathbf E. for σG(K/F)\sigma \in G(\mathbf {K/F}), let σE\sigma_E be the automorphism of E\mathbf E induced by σ\sigma. thus σEG(E/F)\sigma_E \in \mathbf{G(E/F)}. the map θ:G(K/F)G(K/F)\theta:\mathbf{G(K/F) \rightarrow G(K/F)} given by

θ(σ)=σE\theta(\sigma)=\sigma_E

for σG(K/F)\sigma \in \mathbf{G(K/F)} is a homomorphism. and θ\theta is onto G(E/F)\mathbf{G(E/F)}. the kernel of θ\theta is G(K/E)\mathbf{G(K/E)}. by the fundamental isomorphism theorem, G(E/F)G(K/F)/G(K/E)\mathbf{\mathrm G(E/F)\simeq \mathrm G(K/F)\,/\,\mathrm G(K/E)}


  1. A First Course In Abstract Algebra-Jb Fraleigh, 7Ed(2003), th 51.9, p438 ↩︎

  2. A First Course In Abstract Algebra-Jb Fraleigh, 7Ed(2003), th 50.3, p432 ↩︎